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1 Executive Summary

To our knowledge, a problem with this particular structure has not been solved before. Although the problem

resembles a dynamic lot-sizing problem, it contains many hard constraints such as joint truck cost, locomotive

capacity, and limited number of stops. We model the problem as a mixed-integer program and propose several

solution methods, including lagrangian relaxation and adding valid cuts. Our best solution has an optimality gap

smaller than 0.25%.

2 Problem Formulation

Using the notation in Table 1, we formulate the following mixed-integer program. The decisions to be made are

the number of trucks contracted at each yard and the fuel plan for each locomotive.

(P) Minimize
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k∈Kj
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k ≤ TC · zi ∀i ∈ I, t ∈ T (2.7)
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wj
k ≥ 0 ∀j ∈ J, k ∈ Kj (2.8)

xj
k ∈ {0, 1} ∀j ∈ J, k ∈ Kj (2.9)

yj ≥ 0 ∀j ∈ J (2.10)

zi ∈ Z+ ∀i ∈ I (2.11)

The objective is to minimize the sum of all the costs– fueling cost, stopping cost and truck contracting

cost. Constraints (2.2) ensure that the fuel level of each locomotive never exceeds the locomotive tank capacity.

Constraints (2.3) ensure that each locomotive never runs out of fuel along the way. Additionally, constraints (2.4)

enforces that the remaining fuel of each locomotive after completing its cycle is larger than the initial fuel required.

Constraints (2.5) ensure that the amount of fuel dispensed to a locomotive can be positive only when it stops

there. The number of intermediate stops any train could make is limited through constraints (2.6). Constraints

(2.7) guarantee that the number of contracted trucks at each yard is sufficient for the fuel plan. Finally, equations

(2.8)-(2.11) specify the characteristics of each decision variable.

Although the problem resembles a dynamic lot-sizing problem, it contains many hard constraints such as joint

truck cost, locomotive capacity, and limited number of stops. Therefore, solving this problem will require a large

computational time, especially when the problem size is large.

Table 1: Notation

Sets I set of yards, indexed by i.
J set of locomotive routes (or lomotives), indexed by j.

Kj sequence of stops in locomotive route j, indexed by k.
Lj set of sequences of intermediate stops in locomotive route j, indexed by L.
T days of operations = {1, ..., 14}, indexed by t.

Constants R fuel consumption rate.

Dj
k distance from k-th stop to (k + 1)-th stop (or 1st stop, if k = |Kj |) of locomotive route j.

TC truck capacity.
LC locomotive’s tank capacity.
Ct truck contracting cost during the horizon ($ per truck).

Cf
i fuel cost at yard i ($ per gallon).
Cs fixed refueling cost ($ per stop).

αj
i,k equal to 1 if yard i is the k-th stop of locomotive route j; 0 otherwise.

βj
k,t equal to 1 if the k-th stop of locomotive route j is visited on day t; 0 otherwise.

Decision Variables wj
k amount of fuel dispensed at the k-th stop of locomotive route j.

xj
k equals to 1 if locomotive j stops for refueling at its k-th stop.
yj initial fuel level of locomotive j.
zi number of trucks contracted at yard i.
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3 Solution Method

Our initial approach was to implement the MIP and solve it using a commercial solver, CPLEX. While we could

solve the small example to optimality in a matter of seconds, the given instance was not solved to optimality

after hours, although the best solution already has an optimality gap of less than 1%. This happened because

the LP relaxation of the formulation does not provide a tight bound, and thus there is no certificate that the best

solution found is actually optimal. Therefore, we tried several approaches that can potentially acheive smaller

optimality gap in a short time.

3.1 Adding Valid Cuts

One way to improve the bound obtained from an LP relaxation is to add valid cuts– constraints that can be

added to the formulation without affecting the feasible set of the original problem. The first set of constraints

are:

l∑
k=1

xj
k ≥

∑l
k=1R ·D

j
k − yj

LC
∀j ∈ J, l = 1, ..., |Kj | − 1 (3.1)

|Kj |∑
k=|Kj |−l+1

xj
k ≥

(∑|Kj |
k=|Kj |−l+1R ·D

j
k + yj

)
−
(

4500−R ·Dj
|Kj |−l

)
LC

∀j ∈ J, l = 1, ..., |Kj | − 1 (3.2)

|Kj |∑
k=1

xj
k ≥

∑l
k=1R ·D

j
k

LC
(3.3)

Consider constraints of the form (3.1). Given an initial fuel level yj , the total fuel required for locomotive j to get

from the first stop to l-th stop is
∑l

k=1R ·D
j
k − yj , and thus the locomotive needs to make at least

∑l
k=1 R·Dj

k−yj

LC

stops, assuming that it always fills up the tank at any stop. On the other hand, given that a locomotive should

end its cycle with the initial fuel, we can apply a similar idea backward and obtain (3.2), assuming that a fuel

level at the (|Kj | − l)-th stop is maximum. Lastly, the last equation obtained when we consider either forward or

backward direction for the entire cycle.

Additionally, we add xj
k ≤

∑
i∈I α

j
i,kzi for all j ∈ J and k ∈ Kj . This will ensure that a locomotive will not

make a stop at that particular yard for refueling when zi = 0. Lastly, we add zi ≤
⌈

LC·Z̄i

TC

⌉
for all i ∈ I, where

Z̄i is the maximum number of locomotives visiting yard i on any particular day. This set of constraints will be
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used extensively in lagrangian relaxation to bound the feasible range of zi.

3.2 Lagrangean Relaxation

One common way to solve large-scale optimization is to use lagrangian relaxation, especially when the problem

becomes much easier to solve or decomposable after relaxing some constraint. In this case, by relaxing the

contraint (2.7), the resulting formulation can be solved separately for a fuel plan of each locomotive and the

number of contracted trucks.

To obtain an optimal lagragian relaxation solution, we first set the value of zi according to its cost coefficient,

which depends on the current lagragrian multiplier, i.e., if the cost is positive, we set zi to zero, otherwise we

make it equal to the bound introduced in the previous section. In order to solve for a fuel plan of each locomotive,

we re-formulate the problem as a shortest cycle problem. This is possible due to the fact that there exists an

optimal solution such that for any two consecutive fueling stops k′ and k visited by a locomotive, the locomotive

either leaves k′ with a full tank or arrives at k with an empty tank.

Although the idea seems somewhat similar to Nourbakhsh and Ouyang (2010) [2], we propose a novel approach

to solve this particular problem as follows. Firstly, because an intial fuel level is a decision variable in this case,

many nodes in the network could be a starting point, and we thus need to solve all-pair shortest path problem

for a shortest cycle. Floyd-Warshall’s algorithm is used in our implementation. Secondly, we introduce additional

nodes to the network to enable us to completely keep track of the number of stops a train has been made, and hence

ensure that a train does not make more than two stops. Lastly, because the running time of Floyd-Warshall’s

algorithm is O(n3) where n is a number of node, we reduce the number of nodes further, using the fact that in

an optimal solution, for any two consecutive fueling stops k′ and k visited by a locomotive, the locomotive never

leaves k′ with a full tank if a fuel price at stop k′ is larger than k. The detail of the problem re-formulation is

provided in the appendix.

Using the lagragian relaxation solution (LR), we construct two feasible solutions. In the first solution, we fix

xk
j to zero in the original MIP if it is zero in (LR) and solve using CPLEX solver. Note that a locomotive is now

allowed to stop only at the stops included in (LR). This restricted problem can be solved to optimality very fast

because most of the xk
j ’s and wk

j ’s that are fixed to zero can be removed from the original problem. Additionally,
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we can also omit the constraints (2.6) because the set of xk
j ’s that remain in the formulation is gauranteed to

satisfy the constraints. For the second solution, we solve the shortest cycle problems again using only yards with

positive zi. We then obtain a feasible solution from CLPEX in a similar manner as before.

Lastly, we use the subgradient method and the step size formula provided in Held et al. (1974) [1] to update

lagrangian multipliers.

4 Implementation and Results

We solved the given instance using three different methods: (i) using CPLEX to solve the original MIP, (ii)

using CPLEX to solve the original MIP with additional valid cuts, and (iii) using lagrangian relaxation approach

detailed in the previous section. The time limit for each run is 10 minutes. All the methods are implemented in

Java 1.6 and CPLEX 11.2 and run on a 2 GHz CPU and 2 GB memory PC. The computational results are as

follows:

Methods Best feasible solution Best lowerbound Optimality Gap
(i) $ 11,449,604.94 $ 11,316,900 1.16%
(ii) $ 11,402,334.22 $ 11,374,400 0.25%
(iii) $ 11,512,278.75 $ 11,198,033 2.80%

In addition to the results shown, we solved the problem using different methods up to one hour. The best

solution was obtained by using CPLEX to solve the original MIP with additional valid cuts. The cost of the

solution is $11,401,272.58. The detail of the solution is in the submitted Excel file.

Even though the lagrangean relaxation did not perform as well as the other methods, we still expect that the

lagrangean relaxation approach should outperform CPLEX in larger problem. Additionally, from the observation

that given a set of stops that each locomotive is allowed to refuel, CPLEX can solve to problem to the optimality

very fast. It might be worth applying a genetic algorithm on xj
k’s.
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A Appendix

The lagragian relaxation is given by

(L) Minimize
∑
i∈I

∑
j∈J

∑
k∈Kj

(Cf
i α

j
i,k)wj

k + Cs
∑
j∈J

∑
k∈Kj

xj
k + Ct

∑
i∈I

zi

−
∑
i∈I

∑
t∈T

ui,t

TC · zi −
∑
j∈J

∑
k∈Kj

(αj
i,k · β

j
k,t)w

j
k


=

∑
i∈I

∑
j∈J

∑
k∈Kj

[
Cf

i +
∑
t∈T

(βj
k,tui,t)

]
αj

i,kw
j
k + Cs

∑
j∈J

∑
k∈Kj

xj
k +

∑
i∈I

(Ct − TC
∑
t∈T

ui,t)zi

subject to (2.2)-(2.6) and (2.8)-(2.11)

and the subproblem for each locomotive is as follows:

(Sj) Minimize
∑
i∈I

∑
j∈J

∑
k∈Kj

[
Cf

i +
∑
t∈T

(βj
k,tui,t)

]
αj

i,kw
j
k + Cs

∑
j∈J

∑
k∈Kj

xj
k (A.1)

subject to yj +
m−1∑
k=1

(wj
k −R ·D

j
k) + wj

m ≤ LC ∀m = 1, ..., |Kj | (A.2)

yj +
m∑

k=1

(wj
k −R ·D

j
k) ≥ 0 ∀m = 1, ..., |Kj | − 1 (A.3)

|Kj |∑
k=1

(wj
k −R ·D

j
k) ≥ 0 (A.4)

wj
k ≤ LC · x

j
k ∀k ∈ Kj (A.5)∑

k∈L

xj
k ≤ 2 ∀L ∈ Lj (A.6)

wj
k ≥ 0 ∀k ∈ Kj (A.7)

xj
k ∈ {0, 1} ∀k ∈ Kj (A.8)

yj ≥ 0 (A.9)

To solve this particular problem, we first claim that there exists an optimal solution such that for any two

consecutive fueling stops k′ and k visited by a locomotive, the locomotive either leaves k′ with a full tank or

arrives at k with an empty tank.

Let Γj
k be a set of stops k′ of locomotive j for which the amount of fuel required for traveling from k′ to
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k does not exceed the locomotive tank capacity. Mathematically, we have Γj
k = {k′ |

∑k−k′−1
m=0 R · Dj

k′+m
≤

LC where x = x mod |Kj |}.

According to earlier claim, in an optimal solution, unless locomotive j arrives at stop k ∈ Kj with an empty

tank, it must depart from the previous refueling stop k′ ∈ Γj
k with a full tank. Therefore, there are only 1 + |Γj

k|

possible optimal fuel levels when locomotive j arrives at k.

We can transform subproblem (Sj) into a network formulation as follows. For each stop k in locomotive route

j, there are 1+|Γj
k| nodes, (k′, k) where k′ ∈ {0}∪Γj

k, corresponding to different fuel levels at stop k. Additionally,

if k is an intermediate stop (except the intermediate stop immediately after an origin), we add another node,

(0′, k), representing a zero fuel level at stop k, but a train cannot make any more stop. This will allow us to

completely keep track of the number of stops a train has been made, and hence ensure that a train does not make

more than two stops. Let N denote the set of all nodes.

Each arc from node (k′1, k1) to node (k′2, k2) in this network formulation represents a fuel plan where k1 and

k2 are two consecutive refueling stops without any other stops in between. Now we consider incoming arcs to

each node (k′2, k2). If k2 is an intermediate stop of a train, then the previous two nodes together cannot be

intermediate stops of the same train; otherwise a train will make more than two intermediate stops. Specifically,

a previous node (k′1, k1) must not be contained in the set ∆j
k2

= {(k′, k) ∈ N | k ∈ Γj
k2
∩L(k2), k′ ∈ L(k2)∪{0′}},

where L(k2) is a set of intermediate stops of the same train prior to k2. The incoming arcs to node (k′2, k2) are

created as follows:

• If k′2 is 0 and k2 is an origin stop, then the locomotive must depart, with the minimal amount of fuel,

from any stop k1 ∈ Γj
k2

. Mathematically, the set of incoming arcs is given by {((k′1, k1), (0, k2)) | (k′1, k1) ∈

N, k1 ∈ Γj
k2
}

• If k′2 is 0 and k2 is an intermediate stop, then the locomotive must depart, with the minimal amount of fuel,

from any stop k1 ∈ Γj
k2

, and k1 must not be an intermediate stop of the same train L(k2). Mathematically,

the set of incoming arcs is given by {((k′1, k1), (0, k2)) | (k′1, k1) ∈ N, k1 ∈ Γj
k2
\ L(k2)}

• If k′2 is 0’, which implies that k2 is an intermediate stop, the locomotive must depart, with the minimal

amount of fuel, from any stop k1 ∈ Γj
k2

. Additionally, k1 must be an intermediate stop of the same
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train L(k2), and (k′1, k1) is not in ∆j
k2

. In other words, k2 is the second intermediate stop of this train.

Mathematically, the set of incoming arcs is given by {((k′1, k1), (0′, k2)) | (k′1, k1) ∈ N \∆j
k2
, k1 ∈ Γj

k2
∩L(k2)}

• If k′2 ∈ Γj
k2

and k2 is an origin stop, then the locomotive must depart, with the maximal amount of

fuel (i.e., locomotive tank capacity), from stop k′2. Mathematically, the set of incoming arcs is given by

{((k′1, k1), (k′2, k2)) | (k′1, k1) ∈ N, k1 = k′2}

• If k′2 ∈ Γj
k2

and k2 is an intermediate stop, then the locomotive must depart, with the maximal amount of

fuel, from stop k′2. Also, (k′1, k1) must not be in ∆j
k2

. Mathematically, the set of incoming arcs is given by

{((k′1, k1), (k′2, k2)) | (k′1, k1) ∈ N \∆j
k2
, k1 = k′2}

The cost associated with each arc from node (k′1, k1) to node (k′2, k2) comprises a fixed refueling cost for one

additional stop at stop k2 and a fuel purchasing cost at stop k1. The amount of fuel purchased depends on

the fuel levels represented by the origin and destination nodes. Importantly, fuel costs are adjusted according

to the lagrangian multipliers. In particular, for given j ∈ J and k ∈ Kj , the fuel cost at yard i becomes

Cf
i +

∑
t∈T (βj

k,tui,t) per gallon.
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